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OpenPsi @ I111S
Lecture 2, Deep Learning, 2025 Spring

An overview of Lecture 1

* History and big names in deep learning

* From Boolean circuits (starting from-MP-neuron in 1943) to differentiable
networks
* Backpropagation (1986) : first.time to show neural network can learn features
* The fundamental idea

* Breakthrough in 2012

* Speech Recognition
* Unsupervised learning of concepts (cat)
* Image classification
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OpenPsi @ I111S
Lecture 2, Deep Learning, 2025 Spring

An overview of Lecture 1

* History and big names in deep learning

* From Boolean circuits (starting from-MP-neuron in 1943) to differentiable
networks

* Backpropagation (1986) : first.time to show neural network can learn features
* The fundamental idea

* Breakthrough in 2012

* Speech Recognition 2 Today’s lecture (basics)
* Unsupervised learning of concepts (cat) = lecture 4
* Image classification - Today’s lecture (basics)
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Lecture 2, Deep Learning, 2025 Spring

An overview of Lecture 1

* What makes deep learning so special?
*y = f(¢p(x); 0r) 2y = f(NN(x; Onn); Hf)

* Replace hand-tuned feature with a NN = representation learning

e A differentiable model to learn/features!
* We will also talk about discrete models.infuture lectures. ©
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An overview of Lecture 1

* What makes deep learning so special?
*y=f(dp(x);6f) 2y = f(NN(x; Onn); Hf)

A differentiable model to learn features!

* |t redefines a machine learning algorithm
e Conventional ML algorithm:.a few steps of computations (machine program)
» Data = feature = algorithm/model. > output
* DL algorithm: the network architecture and weights (connectionist machine)
* Learning =2 (1)set up theright architecture & (2) enforce the right weights from data
* A new concept-of algorithm:the network architecture

Von Neumann/Princeton Machine Neural Network
PROGRAM
PRC OR NETWORK
DATA
2/24 Processing Memory Copyright @ I11S, Tsinghua University 5
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Today’s Lecture

* Part 1: The simplest deep learning application ---- classification!

* The very basic ideas of deep learning-and backpropagation
* Get a sense of parameter tuning (1BZ/&F)

* Part 2: Convolutional Neural Networks (CNN)
* The very basic ideas of CNN

* Let’s get a sense of deep learning “algorithm”
e More tricks and ideas to come in the next lecture

2/24 Copyright @ 111S, Tsinghua University 6



OpenPsi @ I111S
Lecture 2, Deep Learning, 2025 Spring

Today’s Lecture

* Part 1: The simplest deep learning application ---- classification!
* The very basic ideas of deep learning-and backpropagation
* Get a sense of parameter tuning (1BZ/&F)

* Part 2: Convolutional Neural Networks (CNN)
* The very basic ideas of CNN

* Let’s get a sense of deep learning “algorithm”
e More tricks and ideas to come in the next lecture
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Recap: Classification

* Binary classification problem
* Data x € X € R%, label y(x) € {0,13
* a classifier f(x;0) = y w.r.t. some parameter 6
* Goal: learn 8™ such that for each-x, f (x) can correctly predict its label y
0* = arg meinf err(f(x; 9),y(x))P(x)dx

X

* Machine learning for classification
* Define a proper-err() function

underlying y(x)

* Estimate 8 froma.collection of samples X = {(xi,yi )}

K
2/24 Copyright @ 111S, Tsinghua University Sampled data o 8
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Recap: Logistic Regression

* Logistic regression
+ P(y=1) = f(x;0) = o(wTx + b)

» Logistic function (sigmoid function): o (x) = 1+i_x J
—logew'x+b) y=1 . —+

rerr(f(x0),y) = {— log(1 —o(w'x+b)) y=0

* Learning from data

* Empirical Risk Minimization
C 1 . .
0* =arg min - z err(f(x‘; 0),y‘)

(xtLyt)ex
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Recap: Logistic Regression

* Logistic regression
+ P(y=1) = f(x;0) = o(wTx + b)

» Logistic function (sigmoid function): o (x) = 1+2_x J
—logew'x+b) y=1 . —+

rerr(f(x0),y) = {— log(1 —o(w'x+b)) y=0

* Learning from data

* Empirical Risk Minimization
C 1 . .
0" = arg meinﬁ z err(f(x‘; 0),y‘)

(xtLyt)ex
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Single-Layer Perceptron

A differentiable single-layer perceptron with sigmoid activation
* g(z) is a differentiable function overz and therefore w and x

* Learning: w* = arg mvgnﬁz(xi,yi)ex err(f(xi; W),yi)

* Minimize error on each training data

How to compute w™?

2/24 1  Wda41 - Copyright @ I111S, Tsinghua University 11
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Lecture 2, Deep Learning, 2025 Spring

Single-Layer Perceptron

* Problem Statement
* Given X = {(xi,yi)}
. ]_ . .
* Loss function L(w) = Nzi err(f(x‘; W),y‘)
* Goal: minimize L(w) w.r.t. w
* L(w) is continuous and differentiable

* An instance of optimization problem
* if L(w) is convex-—> convex optimization, we can find optimal solution

* If L(w) is‘nan-convex > non-convex optimization, no guarantee
* Deep learning in general is tackling a non-convex optimization problem

2/24 Copyright @ 111S, Tsinghua University 12
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Function Optimization

* Problem: minimize L(w) w.rt. w %
* Solution: solve VL(w) = 0 3

convex

L(w) 4 :

global maxinmun

inflection pomnt

local numinuun

al numnnen

> Non-convex

w

 How to ensure itis a (local) minimum?
* The Hessian V2L (w) is positive-definite!

Copyright @ I11S, Tsinghua University 13
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Lecture 2, Deep Learning, 2025 Spring

Multi-Variable Calculus Recap: ' Gradient

* Consider f(X) = f(xq, x5, ..., X))

, , L

Vxf(X) = [
e Relation

4f(s) = Ve fOAX =Y SO -
L

o 5 LAk e
I }!;ﬁ} 4ﬂifp,;&f1ﬂ

oFm o). AW N
Ty 0x,,

l
axi

 Notations

* Gradient (V), derivative (d), partial derivative (0)
* The gradient is'the direction of fastest increase in f (X)
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Multi-Variable Calculus Recap:'.Gradient

-

Gradient

0.4 vector P f(X)7
i i |
. Moving in this
= (¢ direction increases
q' g in f{x] faE't_EE't
direction

2/24
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Multi-Variable Calculus Recag: ,r,élsjient
WD N

S
0 o5

IIIIIIIIII

Gradient here
is0

H
= -,
i
s
e

Gradient here |
isO

N

“ e
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Multi-Variable Calculus Recap:'.Gradient

* The gradient Vy f(X) is
perpendicular to the
level curve

2/24 Copyright @ I11S, Tsinghua University e 17




Lecture 2, Deep Learning, 2025 Spring

OpenPsi @ I111S

Multi-Variable Calculus Recap:'Hessian

* The Hessian V2 f (X) of a function f (%4, ..., X;;) is given by the second

derivative

e Positive-definite for

a local minimum

2/24
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Function Optimization (Cont’d)

* Problem: minimize f(X) w.rt. X
* Unconstraint optimization

e Solution

 Step 1:solve Vf(X) =0

e Step 2: calculate V2 f (X)) for candidates from (1) and verify positive-
definiteness

* Issue: what.iflanalytical solution is not feasible?

2/24 Copyright @ 111S, Tsinghua University 19
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Function Optimization (Cont’d)

* lterative solution
e Start with a “guess” X°, and iteratively refine X until Vy f (X) = 0 is reached

* A greedy solution
* Refine X such that f(X) is decreased!
* |dea: follow the gradient.direction’!

A
- I
12
fX) SL¥
oo
1 K, o ..:-E:"-:: 3 iy .
+ ‘ - e e R
= T gy | L I" ;.".' o L T
1 R e =
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Function Optimization (Cont’d)

* The Gradient Descent algorithm (@ H,f?rﬁﬂf.”
* Choose X° S
° Xk+1 — xk _ nkva(Xk)T 1‘-,% Reration 3 {{{/
» Convergence: |f(X*+1) — £(X*)| <& § P,
. . L, Terathon 4 ,.-"
 Remark: GD may find a local optimum or \ /
. . lll"l Convargencea /
a reflection point N\ J Vi
-~
N ]
* n¥ learning rate RAN AL
* A critical parameter for gradient descent ah

* More on nextilecture Valua

2/24 Copyright @ 111S, Tsinghua University 21



Lecture 2, Deep Learning, 2025 Spring

Function Optimization (Cont’d)

* Effectiveness of learning rate n®

¢ Example:f(xl,xz) — x% + X1X> + 4X% ,XO = [3,3]T

e Remark

* small n: safe but slow
* Large n: may diverge

2/24
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Learning the Single-Layer Perceptron

* Problem Statement
* Given X = {(xi,yi)}
e Loss function L(w) = %Zi err(f (x5 w),yt)
* Goal: minimize L(w) w.r.t. w

dy 4
—=0(2)
dy dy dz
dw;  dz dw; -0 (Z)xl
dy _dydz _
- dx; dzdx; (Z)w; 3
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Learning the Single-Layer Perceptron

* Gradient Descent
* Initialize w%; w**1 = w* — »*¥ L(w) “until.convergence
* Compute the Gradient
1 . .
* VyL(w) = =%, Vyerr(f (2 w), y')

e y=1:V,err =-V,loga(wiax) = —iVWG(WTxi)
e y=0:Vy,err = =Vylog(1l=oWw'x + b)) = iVWO'(WTxi)

e Gradient of Sigmoid neuron
1

e g(2) = wherez = wlx

1+e %
* Vuw,0(2) =0'(2)x; and V,.0(z) =ad' (2)w;
224 @ O"(Z) e O'(Z) (1 —_ O'(Z)) Copyright @ 111S, Tsinghua University 24



Lecture 2, Deep Learning, 2025 Spring

Multi-Class Classification

* Example: digit classification
* 10 classes
 Sigmoid output = only valued in (0,1) (binary classes)

* Multi-Class Classification Formulation
e C classes of labels (10 in digit recognition)

* f(x;0): aprobability distribution’'over C classes
* P(y =clx) = fo(x; 0)
* f,=0and Y f. =1

* We need a modified o(z) such that g (2)
becomes a multi-class probability distribution

2/24 Copyright @ 111S, Tsinghua University
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Lecture 2, Deep Learning, 2025 Spring

Multi-Class Classification

e Softmax Function

e C classes, w € R(@+1XC
e z=Wx, zis C dimensional
* f(x;w) = softmax(z)

eZc
* felow) = m x exp(z)

* Interpretation

* A universal operator to convert a
vector to a probability
distribution

 z; is often called./ogit (refer to an
unscaled value)

2/24 Copyright @ 111S, Tsinghua University

* A “soft” version of max operator
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Lecture 2, Deep Learning, 2025 Spring

Multi-Class Classification

* A multi-class perceptron
e C classes, z = Wx,

e
* f(x; W) = softmax(2), f.(x; W) = ] e Wi

Zc

* Learning
» Given X = {(x,¥')}, Loss function L(W) = iy err(f(x5W); vt)
) ’ N L ) )
* The error function
* The probability 'of a class ¢ given input x* is P(y = c|xi) = fc(xi; W)
* Maximize the log probability of desired class yi
»err(f(xh W), pt) = —log fu(x; W)

2/24 Copyright @ 111S, Tsinghua University 27
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= E Wei - Xi
i

Lecture 2, Deep Learning, 2025 Spring

Multi-Class Classification

* The NLL loss (negative log-likelihood loss)
. err(f(x W) y ) = —logf ((xtw)

e’ Xa — -~
°* 7 = WX fc(x W) — W 1 / Wi
.]::

c LW) = =< Silog fi(xhW) = =<3 (2,0 — log X e

* NLL loss is also called-cross-entropy loss
* It is equivalent toithe cross entropy (32X X fi) between f(x; W) and the delta
probability [0,0, ...,0,1,0, ... ] for class k
* CE(p,@).= —2cp(y = c)logq(y = c)

* p(y=k)=1and q = f(x; W)
2/24 * We also called the vector probabitity}0;0yx.v3:854,0, ..., 0] a one-hot vector 28
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Multi-Class Classification

. . Xq wy
* Gradient Computation - . 7, = Zwai-xi
* Note: z = Wx' and W is a matrix! ¥ zi

]_ .
Vg LW) = =3 51 Vo, log fyu(x; W)

. 1 B
* Vi Je(xhEW) = (Vwc,,-zc =5 o7 U, (2 ez’C))_x_d _ W
1 / Wd+1.

_ d+1 A,
. Vwc,ch — ch,j(Zl=+1 Wc,lxll) \ x}

* You have to do this in your coding project ©
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Multi-Layer Perceptron

A N-layered MLP with Sigmoid activation function
e Input layer: y(® = x
* Hidden layer: y®) = fk(z(k)) = fk(W(k)y(k_l) + b(k))
* Activation Function f;(2) (e.g., sigmoid)
» Output Layer: y = softmax(y™)

» Learning all the weights{W ;51 (also called weight and bias)

Trainingdata

(3,5) (Z,2)
(6, 0) (2,.2)s., = |

Input
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Lecture 2, Deep Learning, 2025 Spring

Learning MLPs

* Learning weights by gradient descent
 Initialize all {W %) } (assume b® is'included.in W )

* Foreveryk,i,j

* Update w( ) W(]) n C;L((k)) until convergence

i, Input: vector of Output: Class prob

pixel values
* We need to compute gradient for every weight!

* How to efficiently compute all these gradients?

2/24 Copyright @ 111S, Tsinghua University 31
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The Chain Rule

* Recap: Chain Rule for nested functions
* ¥y = f(g1(%), g2(x), ..., gu (x))

s _ _0f dga(x) n n of  dgm(X)
ax 091 (x) dx dgp(x) dx
* A more complex example wy [1Q w® f2()

* We need all intermediate values!

dDiv(Y,d) ~ KRN v b

oy, L 1 >

* How to compute Do wiy \/ Voo \f ®
dwg 5 '

X i Wa1 i Y
2,
f2()
(2) (2)
X, Ae /) A e Zy ¢
% "
(1)
W31
@ W;zl) (2) w)
2/24 Copyright @ 111S, Tsinghua Ur{ve y Was 1 84 32
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Computing Gradients

e The Forward Pass

 Compute and save all the intermediate values

* Set 3’1(:0d)k « Xx; and yg;zrl «1

e Forlayerk <« 1..N
° Z(k) — W(k)y(k_l)

c y®) = £ (00
e Output Y = y(&)

O
AQY
A\'h. A\'A_ e AYIN
VA /AN ARV VA

E&FAWE&FWE&F&

* Then Gradient?

I
I~ I~ A

,.f /i
)

/

/
.~

/J
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Computing Gradients

* First compute Vy(N)Div() directly




Computing Gradients

Div(Y,d)




Computing Gradients

Div(Y,d)

Already computed




Computing Gradients

1 f
Derivative of
activation function

Computed in forward
pass




Computing Gradients

Div(Y,d)




Computing Gradients

Div(Y,d)

oDiv _ azf‘” dDiv

awl(i” - awl(f) 6Z§N)




Computing Gradients

Div(Y,d)

dDiv aziNJ dDiv
awl(f) B aWﬁJ azl(N) Copyright @ 1118, T}uma@gmwted



Computing Gradients

Div(Y,d)
—>
| Because
N-1 -
aDiv 6Z§N) Div J’l( : z;:N) = wl[‘f)ylm Y} other terms

(N) (N) . (N)
0wy~ \ Wy Pz — rsinahua-niversi
Computed in forward pass



Computing Gradients

Div(Y,d)




Computing Gradients

Div(Y,d)




Computing Gradients

Div(Y,d)




Computing Gradients

Div(Y,d)

N Because
dDiv _Eﬁzj(\al)iv w ) _ (N (N

|z =wiy ~Y } other terms

(N—l) (N—l) (N) Cppyright @ I11S, Tsinghua University
dy, ; \% sz




Computing Gradients

Div(Y,d)

dDiv (N) dDiv
PYRCEEV RNt BP0 )
Vi j %j
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Computing Gradients

Div(Y,d)

0) — —
Y{ ) =x yN-2) i
/ 2(1) yu} 2(N-2) 2(N-1)
N=-2 fN—l
Z{N} Y[N)
fn
fN—Z fN—l '
[ I I ] ‘ dlv()
frn—2) » fn-1 fi
d
fn-2 fnoa

We continue.our way backwards in the order shown

o g
2/24 — (N—-1)  JN-1
62.( )

[
L L

dDiv ( (N—l)) dDiv

Copyric NMT , Tsinghua University
Byct )
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Computing Gradients

OpenPsi @ I111S

—

0) —
y0 = x v
z(N-2) 2(N-1) y{N-l}
N-2 fnv-1
Z(N)
fN
fn2 )
e 0
fn-2 fn-1 fi
fn—2 fn-1
We continue our way backwards in the order shown
dDiv <, “(n-z) ODiv For the bias term yéN_Z:} =1

2/24 aW(N_l) yl 62-(N_1) Copyright @ 111S, Tsinghua University
1] J

Div(Y,d)
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Backpropagation

* Run forward pass to save all the values and then compute gradients in
the reverse order

* Qutput layer (N):

(N)
oL oL oL 0y

e Directly compute gradients — (N) and (N) RPN

ay 0z dy; dz;

* Forlayer k = N — 1 downto O

oL (k) ~_aL
ow l(l]<+1) aZi(k+1)
. oL _ (k%1)~ oL
ayE — i 5 5D

.%_a (k)fk( (k))
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MLP for Classification

° The WorkﬂOW :-r;;;:: Hidden Layers Output
* Design a N-layer MLP neural network = ““f’ﬁ“*j’ Layer
* Initial weights {W (®) } e et =
* Gradient descent until convergence NS 4
* With backpropagation .x X7
Input: vector of QOutput: Class prob

pixel values

2/24 Copyright @ 111S, Tsinghua University 50
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

* Intuition: in the image classification problem
e Let’s consider a particular netron’in the input layer: y = f(w!x);

* y is activated when x is more correlated with the weight
W X X

Correlation = 0.57 Correlation =

2/24 Copyright @ 111S, Tsinghua University 51
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

* Intuition: in the image classification problem
e MLP learns a cascade of features

 |tis important for the first layer tocapture important low-level features
t

& DIGIT ORNOT? (
T oR

2/24 Copyright @ 111S, Tsinghua Universi 52
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

* Intuition: MLP learns a cascade of features
* Practical suggestion: more neurons in the low level

* Depth?
* Deeper network are‘harderto learn

* Intuition: gradients are products over layers
* hard tocontrol thelearning rate

* More onnext lecture to address this challenge for really deep networks

2/24 Copyright @ 111S, Tsinghua University 53
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

e Activation Functions?

* Sigmoid has a beautiful probability interpretation but ...

* |ssues with Sigmoid function
* Always non-negative

1

e?*—1 08

* Alternative: tanh(x) = —— 1

* Gradient vanishing
* Initialization matters!

* Alternative: ReLU(x) = max(x, 0)|
* ...and more variants

2/24 Copyright 8
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ReLU

R(z) =max(0, z)

L
-10

a8

-3 L 5

Rectified Linear United

1

sigmoid
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Deep Learning in P

* How to desigh the MLP?
* Width and depth

e Activation Functions
e A collection of ReLU variants

* Subgradients

e A direction that decrease the
function

* Gradients are subgradients
but not vice versa

f(z)Ez

2/24
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ractice

Sigmoid Hyperbolic Tangent
1 N ¢ . 1 _
Traditional /
Non-Linear o 0
Activation
- -1 : -1
Functions 1 0 1 1 0 1
y=1/(1+e™™) y=(e*-e*)/(e*+e™x)
Rectified Linear Unit .
Exponential L
(ReLU) Leaky ReLU xponential LU
1 1 1
Modern
Non-Linear g 0 0
Activation
Functions
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
X, X209
y=max (0, x) y=max (o, X) 3"={u{e"—1 x<0
Copyright @ 111S, Tsinghua University %5’

a = small const. (e.g. 0.1)
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

* Activation Functions
* RelLu and Subgradients

* Quiz
o f(X) =max(xq, Xy, X0);
° a_f ?
Compute o

2/24 Copyright @ 111S, Tsinghua University 56
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

* Activation Functions
* RelLu and Subgradients

* Learning rate

* For now: larger learning rate can lead to divergence while small learning rate
may lead to no progress

* More on next lecture
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

* Activation Functions
* RelLu and Subgradients

* Learning rate

* Regularization
* Tricks to stabilize the learning process
* L2 norm on all the weights.
e L(w) = Loss(w).+a|w|?
* This is also called weight decay

 V,L =VLoss(w) + aw
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Deep Learning in Practice

* How to desigh the MLP?
* Width and depth

* Activation Functions
* RelLu and Subgradients

* Learning rate

* Regularization

* Let’s get hand dirty!
* http://playground.tensorflow.org/

2/24 Copyright @ 111S, Tsinghua University 59



OpenPsi @ I111S
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Today’s Lecture

* Part 1: The simplest deep learning application ---- classification!

* The very basic ideas of deep learning-and backpropagation
* Get a sense of parameter tuning (1BZ/&F)

* Part 2: Convolutional Neural Networks (CNN)
* The very basic ideas of CNN

* Let’s get a sense of deep learning “algorithm”
e More tricks and ideas to come in the next lecture

2/24 Copyright @ 111S, Tsinghua University 60



Lecture 2, Deep Learning, 2025 Spring

Recap: What does MLP learn?

OpenPsi @ I111S

* A cascade of features (patterns)
* Weights are correlated filters

DIGIT OR NOTH ()

2/24
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Finding the welcome

* Does the signal contain “welcome”?

| g ae i
e = e

3 e =" — o m— [EE—— . a . . i - 2
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Finding the welcome

e A trivial solution: train a MLP!
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Finding the welcome

* The issue
* The filter detects the first welcome does not.apply to the second
 We need a huge amount of training data!

* We need a simple network thatcan fire regardless of the pattern
location

2/24 64




OpenPsi @ I11S
Lecture 2, Deep Learning, 2025 Spring

Finding the flowers

* Another example
* |s there a flower in any of the images?

* Similar issue:
* An MLP detecting the left doesnot
apply to the right one

output layer
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Shift Invariance

* The network needs to be shift invariant
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A Simple solution: Scan

* Use a shared MLP to detect every possible local patterns
* Use a maximum (Boolean OR) over the activations over all the locations

MAX
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP

2/24 Copyright @ I11S, Tsinghua University 70



OpenPsi @ I11S
Lecture 2, Deep Learning, 2025 Spring

A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP

2/24 Copyright @ I11S, Tsinghua University 73



OpenPsi @ I11S
Lecture 2, Deep Learning, 2025 Spring

A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions

Flower detector MLP
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A Simple solution: Scan in 2D

* Detecting a flower using a shared MLP
* Look at every possible positions
* Send the local patch to the same MLP
 take the outputs to a final MAX . or MLP

p—
~1 -l
.‘.‘.‘_ Pt iow
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Regular MILP v.s. Scanning MLP

* Regular MLP

e Extremely dense & high-dimensional'weightimatrix (NM params per layer)

More layers

time

OpenPsi @ I111S
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Regular MLP v.s. Scanning MLP

* Scanning MLP
* Only require a small amount of parameters (the shared MLP for local patch)
* Effective in any situation where the data are expected to be composed of

similar structures at different locations
* E.g. speech recognition, image recognition
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Training the Network

* Still Backpropagation!
 Fully differentiable neural networks

2/24
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Training the Network

* Still Backpropagation!
 Fully differentiable neural networks
e But with constraints --- shared parameter models!
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Training the Network

* Still Backpropagation!
* Let S denotes the edges that have common value
* VsL(W) = Xees Vw,L(W) the effect can.be summed up

* Your homework ©
S = {el, €, ...,eN}
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* We scan the whole image for a desired pattern
* At each location, the patch is sent to an MLP

Input layer Hidden layer

2/24 pyright @ I11S, Tsinghua University 86




A Closer Look at 2D Scanning

* We scan the whole image for a desired pattern

* At each location, the patch is sent to an MLP
* Let’s look at specific neuron

Input layer Hidden layer
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations

activation (Z W;ip;ij + b)

i,j
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations

L 8 4 & W 9 <

OOO(P
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations
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A Closer Look at 2D Scanning

* Let’s consider a single neuron (a simple perceptron)
* We can arrange the neuron outputs corresponding to the image locations

2/24

* We obtain a rectangle outputs!

111S, Tsinghua University
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

2/24 111S, Tsinghua University 97
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer

2/24
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer

2/24
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* And we send the neuron outputs to'the second layer for classification

* Each output location of the second layer.takes the input from the same
location from the first layer
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A Closer Look at 2D Scanning

* The output for each neuron can be organized as a rectangle similarly

* For each location, the outputs will be passed towards the final layer
* A final MLP layer produces the overall classification result
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2D Scanning: a Spatial View
Input layer h&&}‘léﬁer“

L R

2
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2D Scanning: a Spatial View

* Each position in the output neuron map corresponds to a patch
position in the input image

R S e
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2D Scanning: a Spatial View

* Each position in the output neuron map corresponds to a patch

position in the input image Can distributed the scanning
* The first layer takes care of the entire patch workload across layers?

» Top layers only takes a single value from its input rectangle
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Distributed Scanning

OpenPsi @ I11S

* Let’s distribute the pattern matching workload over 2 layers

e E.g., perform 9x9 patch scanning by 2 lay

ers-of 3x3 scanning

* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches

Tsinghua University v
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers

* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers

* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
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Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
* Second layer scans the patch from the output of first layer
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Lecture 2, Deep Learning, 2025 Spring

Distributed Scanning

* Let’s distribute the pattern matching workload over 2 layers
* E.g., perform 9x9 patch scanning by 2 layersof 3x3 scanning
* First layer for smaller patches and second layer for larger patches
» Second layer scans the patch from the output of first layer - larger patch
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Distributed Scanning

* Let’s learn the patterns over 3 layers
* A similar recursive logic
* First layer for small pattern

%
®
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Distributed Scanning

* Let’s learn the patterns over 3 layers
* A similar recursive logic
* Second layer for intermediate pattern

R e e
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Distributed Scanning

* Let’s learn the patterns over 3 layers
* A similar recursive logic
* Top layer for the entire complex pattern

2/24 Copyright @ I11S, Tsinghua University 124
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Distributed Scanning

* Let’s learn the patterns over 3 layers A giaft'network building up

e A similar recursive logic a hierarchy of features!

* Top layer for the entire complex pattern
* Final MLP output for classification result over the entire image
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Pseudo-code

Y(O,:,:,:) = Image
for 1 = 1:L
for 7 = 1:D4
for x = 1:W,_,-K;+1
for v = 1:H;_5K;+1
2 (1,3, X = WO
for J(Q&]_DQ
Q%r,x@l:lil
\/ & r vyl = 1:K;
Q z(1l,3,x,y) +=w(l,1,3,x",y")
SO R Y (1-1,1,x+x’ -1, y+y’ -1)
Y(,7,x,y) = activation(z(1l,7,x%x,V))
2/24 Y = softmax( Y (L, :, 1 sekiges nid/ e viverdip— K+1 , H-K+1) )




Lecture 2, Deep Learning, 2025 Spring

Pseudo-code

Y(O,:,:,:) = Image

OpenPsi @ I11S

for 1 = 1:1L # layers
for 7 = 1:D4
for x = 1:W,_,-K;+1
for v = 1:H;_5K;+1

L layers

z(1,3, > = WO
for ;<s>l:D\qg>~
Qg@br,x<§;bl:Kl
\\/ <E;br y’ = 1:K;
& z(1,3,x,y) += w(l,1i,3,x",y")
Y(1-1,1,x+x"-1,y+y"-1)

N

P\

Y,j,x,y) = activation(z(1,7,x,V))

2/24 Y = softmax( Y (L, :, 1 sekiges nid/ e viverdip— K+1 , H-K+1) )
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Pseudo-code

Y(O,:,:,:) = Image

for 1 = 1:1 # layers D; channels
for j = 1:D; # D;is often calledichannelsiin computer vision
for x = 1:W,_,-K;+1
for v = 1:H;_5K;+1
z(Ll,3,x/%)r = 0
for i ="1:DN\
Jor ,x{ 1K,

ror y' = 1:Ky

z(l,),%x,y) += w(l,1,3,x",y")
Y(1-1,1,x+x"-1,y+y"-1)

Y,j,x,y) = activation(z(1,7,x,V))

2/24 Y = softmax( Y (L, :, 1 sekiges nid/ e viverdip— K+1 , H-K+1) ) 128
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Pseudo-code

Y(O,:,:,:) = Image

for 1 = 1:1L # layers
for j = 1:D; # D;is often calledichannelsiin computer vision
for x = 1:W,_,-K;+1
for v = 1:H;_5K;+1

z(1l,7,xMy)r = O\#compute feature at layer |, channel j at (x, y)
for i ="1:DN\
Jor ,x{ 1K,

ror y' = 1:Ky

z(l,),%x,y) += w(l,1,3,x",y")
Y(1-1,1,x+x"-1,y+y"-1)

Y,j,x,y) = activation(z(1,7,x,V))

2/24 Y = softmax( Y (L, :, 1 sekiges nid/ e viverdip— K+1 , H-K+1) ) 129
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Pseudo-code

Y(O,:,:,:) = Image

for 1 = 1:1L. # layers K; Kernel size
for j = 1:D; # D;is often calledichannelsiin computer vision
for x = 1:W,_,-K;+1

for v = 1:H;_5K;+1

z(1l,7,xMy)r = O\#compute feature at layer |, channel j at (x, y)
for il = 1:Dy5
for ,x{ \=J1:K, #K,is often called kernel size

ror y' = 1:Ky

z(l,),%x,y) += w(l,1,3,x",y")
Y(1-1,1,x+x"-1,y+y"-1)

Y(,j,x,y) = activation(z(1,7,x%,V))

2/24 Y = softmax( Y (L, :, 1 sekiges nid/ e viverdip— K+1 , H-K+1) ) 130
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Pseudo-code

Y(O,:,:,:) = Image

for 1 = 1:1L # layers
for j = 1:D; # D;is often calledichannelsiin computer vision
for x = 1:W, ,-K,+1
H &\H = 124
for This opera;t\@q‘ls cal Convolution

z(1l,7,xMy)r = O\#compute feature at layer |, channel j at (x, y)
for il = 1:Dy5
for ,x{ \=J1:K, #K,is often called kernel size

ror y' = 1:Ky

z(l,),%x,y) += w(l,1,3,x",y")
Y(1-1,1,x+x"-1,y+y"-1)

Y,j,x,y) = activation(z(1,7,x,V))

2/24 Y = softmax( Y (L, :, 1 sekiges nid/ e viverdip— K+1 , H-K+1) ) 131
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Distributed Scanning in 1D Case

* We can scan a 8-timestep patch with distributed scan over 2 layers
* First layer: takes inputs over 2 timesteps and.a stride of 2 timesteps
* Second layer: takes input over 4 timesteps from first layer

Each bar represents an entire
layer of neurons

2/24 ! I Cor!/riqh!@ II'S, Ts'ng_hua'Unin!rsitv| | | ! ! | ' ' ! ! 132
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Why Distributed Scanning?

* Each layer focuses on localized patterns
* Weights have lower dimensions
* Easy to learn and more generalizable

* Number of Parameters!

2/24 Copyright @ 111S, Tsinghua University
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Why Distributed Scanning?

e Number of Parameters in 2D

e Non-distributed net:
e #Param = O(K?N; + N{N, + N,N3)

N, units

K X K block N, units

2/24 singhua University 134
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Example:

Why Distributed Scanning? lk=16m=4m=2n5=1

Ly=L,=2

. Dominating term
* Number of Parameters in 2D <

* Non-distributed net: #Param = 0+ N¢{N; + N,N3) ™ 1034 weights

* Distributed over 3 layers: N, channels

e #Param =0 <L§N1 + L5N;N, + (—
. 1~2
~ 160 weigh

‘-—__ i £a

N3 channels
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Why Distributed Scanning?

* Each layer focuses on localized patterns
* Weights have lower dimensions
* Easy to learn and more generalizable

* Number of Parameters!
 Significantly reduce the amount of parameters when use more layers

2/24 Copyright @ 111S, Tsinghua University 136
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A More General Form of Scanning

* We do not necessarily need precise distribution over layers

* Let’s re-examine the convolution operators
* First layer scans small local sub-regions

2/24
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A More General Form of Scanning

* We do not necessarily need precise distribution over layers

* Let’s re-examine the convolution operators
» Second layer scans subregions from thefirst layer = larger patch in the image

b ol St b
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A More General Form of Scanning

* We do not necessarily need precise distribution over layers

* Let’s re-examine the convolution operators We can have
. . . arbitrarily many
* Third layer just scans subregions.from the second layer |
ayers

Taseseil
Copyright @ 111S, Tsinghua University
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A More General Form of Scanning

* Terminology
* Filters: scans for a pattern on the map from'the previous layer
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A More General Form of Scanning

* Terminology
* Filters

* Receptive Fields: the corresponding patch.in the input image
* Non-trivial for high-level filters
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A More General Form of Scanning

* Terminology
* Filters, Receptive Fields

 Strides: the scanning “hops” for each filter
* This can reduce the output map-size

OpenPsi @ I11S
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A More General Form of Scanning

e Size of Output Map

* Filter Size M; Input Map Size N; Stride S
* Convolution often reduces the map size.even with S =1

M xX M

Filter

2/24

Size: N X N

Copyright @ 111S, Tsinghua Universlty
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A More General Form of Scanning

e Size of Output Map
* Filter Size M; Input Map Size N; Stride S
* Convolution often reduces the map size.even with S =1

* Solution: zero-padding
e Pad 0 all around the map

. o . N
* |t ensures the output sizeiis [ﬂ

* For stride=1,
the output map remains.the same size as input map

2/24 Copyright @ 111S, Tsinghua University
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A More General Form of Scanning

e Account for jittering
* If a pattern in the image shifts for 1 pixel, can we still detect it?
* Even with a 1-pixel shift, a large portion.of the feature map changes

+++++++
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+
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IZEEX X
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A More General Form of Scanning

e Account for jittering
* If a pattern in the image shifts for 1 pixel, can we still detect it?

* Small jittering is acceptable!
* Replace each value by the maximum over a small neighboring region
* This is called max-pooling

rEE
TR
YT,

bbbt
bbbt
EE R E R
tEE A

TR T

:_t:+++ Ma)( ++1+++++
e s e R it i . i
+ —> ssswBDed
LR EE
L R R R +++i+1++
LRt FEEE AP
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A More General Form of Scanning

* Max-Pooling typically has non-overlap.strides
e Stride = max-pooling size
* |t partitions the output map into blocks

* Each block only maintain the highest value
* Any pattern detected in the.region, it is detected
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A More General Form of Scanning

* Max-Pooling typically has non-overlap.strides
* Stride = max-pooling size
* |t partitions the output map into blocks
* Each block only maintain the highest value

* Any pattern detected in the.region, itiis detected

Single depth-slice

A
X 1 14 2 4
max pool with 2x2 filters
5 6 | 7 8 and stride 2 6 | 8
>
3 2 110 34
1 2 | 3 4
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A More General Form of Scanning

* Max-Pooling typically has non-overlap.strides
e Stride = max-pooling size
* |t partitions the output map into blocks
* The next layer works on pooled map
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Convolutional Neural Networks

* The entire architecture is called CNN
e Convolution layer
* Max-Pooling layer
* Final MLP layer for classification-output

EaE s
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Back to the 1D Case

1D Convolution + Pooling + MLP = Classification
* Whether the voice has “Welcome” in‘it
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Additional Remarks

* The input channels
e 1 (black-white) or 3 (RGB)
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Additional Remarks

* Alternatives to Max-Pooling

* Average-Pooling: use mean instead of max
* A soft version of max operator 2 more informative gradients

Single depth slice

) tla]1]24%
Mean pool with 2x2
5 6 7 8 filters and stride 2
>
3 2 1 0
1 2 3 | 4

2/24 Copyright @ 111S, Tsinghua University
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Additional Remarks

* Alternatives to Max-Pooling
* Average-Pooling: use mean instead of max

* Fully Convolutional Network: downsampling instead of pooling
e Convolution with stride > 1 reduces the map size (downsampling)
* Equivalent to “learning a learned pooling operator”

Just a plain old convolution

% % layer with strides1
—] ]
ad | L—tl o ==
2/24 % Copyright @ I11S, Tsinph wwe'rs y
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The LeNet-5 Example

* 1998 by Yan LeCun
* First commercial CNN application for-digit recognition

C3:f. maps 16@10x10
C1: feature maps

INPUT 6 @26428 oS40 f. maps. 16@5x5
32x32 S2: f. maps C5: layer .
6@14x14 \ Tr 120 o laver Pr ik

I
.

~ r

|
‘ Full con%ection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
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AlexNet

* 2012 by Alex Krizhevsky. llya Sutskever. Geoffrey Hinton
* Breakthrough on ImageNet Challenge: the beginning of deep learning era

5 Convolutional Layers

NN
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AlexNet

* 2012 by Alex Krizhevsky. llya Sutskever. Geoffrey Hinton
* Breakthrough on ImageNet Challenge: the beginning of deep learning era

GPU #1
intra-GPU cennections You don’t need GPU for HW1 ©

ipas \dense

»L3

2048
2248%0istrig 128

[3
] |
' 5 o \ S n
" > \ A\ |
3
ax in
of 4 pooling pooling
N R
2/24 Copyright™@ I11S, Tsinghua University 157

GPU #2 inter-GPU connections




OpenPsi @ I111S
Lecture 2, Deep Learning, 2025 Spring

Summary

e Part 1: learning an MLP for classification!
* The basic components and learning algorithm

e Part 2: convolutional neural network
* The intuition and basic architecture

* You are now ready for CP1!
* Backpropagation and-initial tuning attempt ©

* Next lecture: more tricks are coming!
e Get your hands extremely dirty!
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